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Abstract

Polygenic scores (PGS) are important tools for carrying out genetic prediction of common diseases and disease related complex traits,
facilitating the development of precision medicine. Unfortunately, despite the critical importance of PGS and the vast number of
PGS methods recently developed, few comprehensive comparison studies have been performed to evaluate the effectiveness of
PGS methods. To fill this critical knowledge gap, we performed a comprehensive comparison study on 12 different PGS methods
through internal evaluations on 25 quantitative and 25 binary traits within the UK Biobank with sample sizes ranging from 147 408
to 336 573, and through external evaluations via 25 cross-study and 112 cross-ancestry analyses on summary statistics from multiple
genome-wide association studies with sample sizes ranging from 1415 to 329 345. We evaluate the prediction accuracy, computational
scalability, as well as robustness and transferability of different PGS methods across datasets and/or genetic ancestries, providing
important guidelines for practitioners in choosing PGS methods. Besides method comparison, we present a simple aggregation
strategy that combines multiple PGS from different methods to take advantage of their distinct benefits to achieve stable and superior
prediction performance. To facilitate future applications of PGS, we also develop a PGS webserver (http://www.pgs-server.com/) that
allows users to upload summary statistics and choose different PGS methods to fit the data directly. We hope that our results, method
and webserver will facilitate the routine application of PGS across different research areas.
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Introduction

Accurate genetic prediction of complex traits may facili-
tate disease screening at population scale, improve inter-
vention at an early stage and aid in the development of
precision medicine [1–3]. Because most complex traits
have a polygenic architecture and are each influenced by
thousands of single-nucleotide polymorphisms (SNPs),
accurate genetic prediction of complex traits requires
modeling genome-wide SNPs and constructing polygenic
scores (PGS; [4]). PGS for a trait, in its simplest form, is
a weighted summation of genotypes across SNPs with
the weights being their estimated genetic effect sizes [5,
6]. PGS is commonly referred to as the polygenic risk
score (PRS) or genetic risk score (GRS) when this trait
of interest is a binary trait of disease status [7]. PGS
are becoming widely applied in the research setting for
disease stratification and are becoming adapted towards
precision clinical decision across a number of common
diseases and disease related complex traits [8–18]. The
application of PGS is greatly facilitated by the increasing
availability of data from large-scale biobank studies [19].
Commonly available biobank data include UK Biobank

(UKB; [20]), Biobank of Japan (BBJ; [21]), China Kadoorie
Biobank (CKB; [22]), FINNGEN [23] and All of Us [24], to
name a few. Biobank studies often collect a large number
of samples, which is crucial for building accurate predic-
tion models. Some biobank studies also focus on samples
from a non-European ancestry, which, when paired with
biobank studies of predominantly European ancestry,
can facilitate the examination of the transferability and
portability of PGS across genetic ancestries [25–29].

Because of the importance of PGS and the abundant
availability of biobank scale data, many PGS methods
have been recently developed to make use of the GWAS
summary statistics that are readily available from
biobank studies for PGS construction [30]. These PGS
methods often rely on a multiple regression modeling
framework and make distinct modeling assumptions,
either polygenic or sparse, on the SNP effect size
distribution underlying the trait of interest [3, 27, 31, 32].
For example, the infinitesimal model, also known as the
linear mixed model (LMM) or the best linear unbiased
predictor (BLUP), assumes that all SNPs have non-
zero effects and that their effect sizes follow a normal
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distribution with a common variance that is shared
across SNPs. The infinitesimal model is implemented
in multiple software packages that include LDpred2 [33]
and summary best linear unbiased prediction (SBLUP;
[34]). Similarly, lassosum [35], determination Bayesian
sparse linear mixed model (DBSLMM; [27]), latent
Dirichlet process regression (DPR; [36]) and polygenic
risk score continuous shrinkage (PRS-CS; [37]), assume
that all SNPs have non-zero effects and that each SNP
effect size follows a normal distribution but with a
SNP-specific variance. A SNP-specific variance leads
to a scale-normal mixture distribution on the SNP
effect sizes, which induces adaptive shrinkage on the
SNP effect estimates, resulting in proper shrinkage of
small effect estimates without over-shrinkage of the
large effect estimates. In contrast to these polygenic
models, sparse models assume that only a small
proportion of SNPs have non-zero effects. For example,
the Bayesian variable selection regression (BVSR) model,
implemented as LDpred2-sp [33], specifies a point-
normal distribution on the SNP effect sizes. Similarly,
SBayesR [38] relies on a mixture of three normal
distributions along with a point mass at zero to induce
sparsity on the SNP effect estimates. Besides the above
model based PGS methods, multiple PGS methods that
were initially described as an algorithm can also be
viewed as making implicit modeling assumptions on
the SNP effect sizes. For example, the most commonly
used PGS method, clumping and threshold (CT) [5],
relies on linkage disequilibrium (LD) clumping and P-
value threshold to select a subset of approximately
independent SNPs with strong association evidence for
PGS construction. The CT strategy ensures a sparse
set of SNPs to be used for constructing PGS and thus
corresponds to making a sparse assumption on the SNP
effect sizes. Similarly, stacked CT (SCT; [39]) extends CT
by incorporating a penalized regression to examine an
extended set of hyper-parameters for more effective SNP
selection.

Given the large number of recently developed PGS
methods, one naturally wonders which PGS method one
should choose for any given trait of interest. Answering
this question remains difficult because only a limited
number of comparison studies have been carried out to
evaluate the performance of PGS methods. Existing com-
parative studies are often restricted to a small number of
PGS methods and a small number of examined traits and
are often carried out within the same genetic ancestry
that cannot be used to examine the robustness and
transferability of PGS methods across ancestries [40–42].
Here, we perform a comprehensive comparative study
on 12 commonly used PGS methods for 50 phenotypes
that include 25 quantitative traits and 25 binary traits.
We evaluate the performance of PGS methods through
internal validations in the UKB as well as cross-study and
cross-ancestry validations with external data sources
[43]. In addition to method comparison, we present a
simple aggregation strategy that combines multiple PGS

from different methods to take advantage of their dis-
tinct benefits to achieve stable and superior prediction
performance. To facilitate future applications of PGS, we
also develop a PGS webserver that allows users to upload
their own GWAS summary statistics and choose differ-
ent PGS methods to fit the data directly on the server.
Together, we hope that our results can serve as an impor-
tant guideline for practitioners to choose PGS methods
and that our webserver can serve as an important tool
for analysts to carry out routine PGS applications.

Methods
Compared PGS methods
We compared a total 12 different PGS methods in
the present study. The compared methods include
CT, DBSLMM, lassosum, LDpred2-auto, LDpred2-inf,
LDpred2-nosp, LDpred2-sp, non-parametric shrinkage
(NPS), PRS-CS, SbayesR, SBLUP and SCT. All 12 methods
use GWAS summary statistics as input (Table 1). We
describe the fitting of these methods in detail below.

CT [5, 44] relies on informed clumping and P-value
thresholding to select SNPs for PGS construction. We
used the bigsnpr R package (v.1.4.4) to perform clumping
and thresholding for CT. Clumping and thresholding in
CT are determined by three hyper-parameters: the P-
value threshold for selecting the significant SNPs, and
the window size and r2 for LD based SNP clumping.
Following [39], we explored different combinations of the
three hyper-parameters and selected the optimal param-
eter combination for each trait through cross-validation.
Specifically, we considered 50 different choices for the
P-value threshold. These P-value threshold choices are
evenly spaced on the logarithmic scale between the min-
imum and maximum marginal P-values for the trait of
interest obtained in the training data. We considered four
different choices for the window size (50, 100, 200 and
500 Kb) and seven different choices for r2 (0.01, 0.05, 0.1,
0.2, 0.5, 0.8 and 0.9). We fitted CT model for each hyper-
parameter combination in the training data and selected
the optimal combination based on Pearson correlation
(R2; for quantitative traits) or area under the curve (AUC;
for binary traits) in the validation data. With the selected
optimal hyper-parameter combination, we evaluated the
performance of the resulting PGS in the test data.

DBSLMM [27] uses all SNPs for PGS construction. It
categorizes SNPs based on their effect sizes into two
groups: a group of large effect SNPs and a group of
small effect SNPs. DBSLMM effectively places different
effect size shrinkages on the two groups of SNPs sep-
arately to achieve adaptive shrinkage. Following [27],
we used the clumping and thresholding procedure in
PLINK (v.1.90b6.9) to select the large effect SNPs setting
r2 to be 0.2. Afterwards, we used the DBSLMM soft-
ware (v.0.3) to fit the DBSLMM model. DBSLMM con-
tains two hyper-parameters, which is the SNP heritability
explained by small effect SNPs and the P threshold.
We considered three choices for the P-value threshold
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Table 1. List of compared PGS methods

No. Methods Categorization Parameter tuning Implementation language Year of publication References

1 CT Non-model-based Yes R/Rcpp 2009, 2019 [5, 39]
2 DBSLMM Polygenic Yes R/cpp 2020 [27]
3 lassosum Polygenic Yes R/Rcpp 2017 [35]
4 LDpred2-auto Polygenic No R/Rcpp 2020 [33]
5 LDpred2-inf Polygenic No R/Rcpp 2020 [33]
6 LDpred2-nosp Polygenic Yes R/Rcpp 2020 [33]
7 LDpred2-sp Sparse Yes R/Rcpp 2020 [33]
8 NPS Non-model-based Yes R + cpp 2020 [45]
9 PRS-CS Polygenic Yes Python 2019 [37]
10 SBLUP Polygenic No Cpp 2017 [34]
11 SbayesR Sparse No Cpp 2019 [38]
12 SCT Non-model-based Yes R/Rcpp 2019 [39]

The table lists standard properties of each PGS method that include its categorization (3rd column), parameter tuning (4th column), implementation language
(5th column), its year of publication (6th column) and the corresponding reference citations (7th column). CT: clumping and threshold; DBSLMM: tuning version
of determination Bayesian sparse linear mixed model (DBSLMM); LDpred2-auto: automatic version of LDpred2; LDpred2-inf: infinitesimal version of LDpred2;
LDpred2-nosp: non-sparse version of LDpred2; LDpred2-sp: sparse version of LDpred2; NPS: non-parametric shrinkage; SBLUP: summary best linear unbiased
prediction; SbayesR: summary BayesR; SCT: stacked clumping and threshold.

(1e−4, 1e−5 and 1e−6). Following [27], we also considered
three SNP heritability choices for DBSLMM in the form
of {0.7,1, 1.4} × h2

LDSC, where h2
LDSC is the estimated SNP

heritability by LD score regression (LDSC) (v.1.0.1) for
the trait of interest. Afterwards, we fitted DBSLMM for
each choice of the hyper-parameters in the validation
data, selected the optimal hyper-parameter based on the
validation data and evaluated the performance of the
resulting PGS in the test data. Besides the tuning version
of DBSLMM, we also examined the original automatic ver-
sion of DBSLMM (DBSLMMauto), which does not require
a validation dataset and takes the SNP heritability and
P threshold choice of h2

LDSC and 1e−6, respectively. We
fitted DBSLMM-auto in the training data and evaluated
the performance of the resulting PGS in the test data.

Lassosum [35] uses lasso to select SNPs and construct
PGS. We used the lassosum R package (v.0.4.5) for model
fitting. Lassosum contains two hyper-parameters: the
penalty parameter (λ) in the lasso regression and the
shrinkage parameter (s) used for computing the SNP
correlation matrix in the reference panel. Following [35],
we considered four choices of s (0.2, 0.5, 0.9 and 1) and
20 choices of λ that are evenly spaced on the logarithmic
scale between log(0.001) and log(0.1). We fitted lassosum
for each hyper-parameter combination in the reference
panel, selected the optimal combination in the validation
data and evaluated the performance of the resulting PGS
in the test data.

LDpred2 [33] is an updated version of LDpred that
can be used to construct PGS using different models.
LDpred2 is implemented in the bigsnpr R package
(v.1.4.4), which we used for model fitting. Following
[33], we examined four different models implemented
in LDpred2 described as follows. (i) LDpred2-inf is the
infinitesimal model that is fitted based on an analytic
solution. (ii) LDpred2-nosp fits a BVSR model and selects
a small proportion of SNPs to construct PGS. LDpred2-
nosp contains two hyper-parameters that include the
proportion of causal variants P and the SNP heritability

h2. LDpred2-nosp explores different combinations of
the two hyper-parameters on a pre-selected set of grid
values and determines the optimal hyper-parameter
combination through cross-validation. (iii) LDpred2-sp
fits the same model as LDpred2-nosp but sets the effect
of some SNP to be zero in the estimation process and
thus becomes sparse. (iv) LDpred2-auto fits the same
model as LDpred2-nosp but automatically estimates P
and h2 from the reference panel. Due to memory and
computational constraints, for each LDpred2 method,
we followed [33] to fit one chromosome at a time and
combine the resulting PGS across chromosomes as the
final PGS for the method. For LDpred2-sp and LDpred2-
nosp, we considered different hyper-parameter choices
following the software recommendation. Specifically, for
P, we considered 21 different values that range from
10−5 to 1 on the log-scale. For h2, we considered three
different values in the form of {0.7,1, 1.4} × h2

LDSC. We
fitted all four methods in the training data, selected the
optimal hyper-parameter combination for LDpred2-sp
and LDpred2-nosp in the validation data and evaluated
the performance of the resulting PGS in the test data.

NPS [45] transforms SNPs into an orthogonal eigen-
locus space, groups eigenlocus into different partitions
based on their marginal effect sizes and shrinks the
eigenlocus effect sizes in different partitions differently.
We used NPS R software (v.0.1) to fit NPS and used its
default settings with the window size set to be 4 kb
following [45]. We fitted NPS model in the training data
and tested PGS performance in the test data.

PRS-CS [37] places a CS prior on SNP effect sizes.
We used the PRS-CS python package for model fitting.
Following [37], we set the hyper-parameter a in PRS-
CS to the default value of 1, set the hyper-parameter
b to the default value of 0.5 and inferred the global
scaling hyper-parameter φ among a set of four choices
{10−6, 10−4 and 0.01,1}. We also examined the automatic
version of PRS-CS, referring to PRS-CSauto, which inferred
φ based on the reference panel alone. We fitted PRS-CS in

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/2/bbac039/6534383 by N

anjing M
edical U

niveristy user on 15 M
arch 2022



4 | Yang and Zhou

the training data and evaluated the performance of the
resulting PGS in the test data.

SbayesR [38] is a summary statistics version of BayesR.
It selects SNPs with non-zero effects using a sparsity
inducing prior that consists of a point mass at zero
along with a mixture of normal distributions. We used
the GCTB software (v.2.02) to fit SbayesR. Following [38],
we set the weights of the four normal components (‘–
pi’) to the default values of {0.95, 0.02, 0.02 and 0.01}
and set the four scaling variance parameters (‘–gamma’)
to the default values of {0, 0.01, 0.1 and 1}. We con-
structed the SNP LD matrix using the ‘–make-shrunk-
ldm’ option, again with the default settings (effective
population size = 11 400; genetic map sample size = 183
and shrinkage hard threshold = 10−5). We set the MCMC
chain length to be 10 000 with an additional 2000 burn-in
iterations. We fitted SbayesR model in the training data
and evaluated the performance of the resulting PGS in
the test data.

SBLUP [34] fits the same infinitesimal model as
LDpred2-inf but with a slightly different fitting algo-
rithm. We used the GCTA software (v.1.93.2) to fit SBLUP
and used h2

LDSC as the SNP heritability input. SBLUP
also requires users to specify a LD window size that
is used to construct the SNP correlation matrix in the
reference panel. We fitted SBLUP model in training data
and evaluated the performance of the resulting PGS in
the test data.

SCT [39] extends CT by searching over a larger param-
eter space set up by four hyper-parameters. We used
bigsnpr R package (v.1.4.4) to fit SCT with default settings.
We fitted SCT for all combinations of hyper-parameters
in the training data, applied an elastic net based penal-
ized regression on the resulting PGS from these hyper-
parameter combinations in the validation data to cal-
culate the final SNP weights and evaluated the perfor-
mance of the resulting PGS in the test data.

Besides the 12 PGS methods, we also explored a novel
strategy of aggregating different PGS constructed from all
12 methods into a single PGS for phenotype prediction.
The aggregated PGS, which is referred to as the PGSagg,
is a weighted summation of the 12 PGS, with the weights
determined in a separate/second validation data. In par-
ticular, we randomly selected 5% of the entire sample
to create a second validation data. We then fitted each
of the 12 PGS methods in the training data, tuned their
hyper-parameters in the validation data if needed, esti-
mated the weights for the 12 PGS in the second validation
data by fitting a standard linear regression and evaluated
PGS performance in the remaining samples of the test
data.

Note that the majority of the compared PGS methods,
with the only exception of CT and SCT, explicitly model
the SNP correlation structure induced by LD during PGS
construction. These methods obtained the SNP correla-
tion matrix from a reference panel using three differ-
ent approaches. Due to the constraint of memory and
time, we set different LD window size for LDpred2 and

SBLUP, including Hapmap phase 3 (HM3) version and the
imputed UK BiLEVE version of the genotype data (details
of the genotype data are provided in the next section). In
particular, DBSLMM, lassosum and PRS-CS constructed a
block-diagonal SNP correlation matrix with varying block
sizes following [46]; SBLUP constructed a block-diagonal
SNP correlation matrix with a fixed block size that equals
to 1 Mb for non-dense SNP set and 0.2 Mb for dense
SNP set; LDpred2 set different LD window size to be
3 cM for non-dense SNP set and 0.2 Mb for dense SNP
set; SBLUP constructed a block-diagonal SNP correlation
matrix with a fixed block size that equals to 1 Mb for
non-dense SNP set and 0.2 Mb for dense SNP set; NPS
constructed a SNP correlation matrix with overlapped
blocks where each block consisted of 4000 SNPs and
the shift window size was set to 0, 1000, 2000 and 3000
SNPs and SbayesR constructed a banded SNP correlation
matrix using the shrinkage procedure presented in [47].

In the analysis, we also recorded the computation time
and memory usage for the compared PGS methods. For
SCT, because it only includes one additional step on
top of CT and the additional step does not incur much
computational cost, we simply used the computing cost
of CT for SCT. For LDpred2-sp and LDpred2-nosp, because
they are fitted using the same function and are not
separatable from each other, we recorded their combined
computing cost and denoted it as LDpred2. In total, we
recorded computation time and memory usage for eight
PGS methods.

UKB internal cross-validation
We evaluated the performance of PGS methods for
50 traits in the UKB data through Monte Carlo cross-
validation. The 50 traits consist of 25 quantitative traits
and 25 binary traits. The 25 quantitative traits include
standing height (SH), bone mineral density (BMD), high
density lipoprotein (HDL), basal metabolic rate (BMR),
platelet count (PLT), body mass index (BMI), body fat per-
centage (BFP), age at menarche (AM), hip circumference
(HC), red blood cell count (RBC), trunk fat percentage
(TFP), RBC distribution width (RDW), waist circumference
(WC), eosinophils count (EOS), total triglycerides (TG),
white blood cell count (WBC), forced vital capacity (FVC),
forced expiratory volume (FEV) versus FVC ratio (FFR),
FEV, waist–hip ratio (WHR), systolic blood pressure (SBP),
total cholesterol (TC), low density lipoprotein (LDL),
birth weight (BW) and sodium in urine (SU). The 25
binary traits include type I balding (T1B), qualification
(QU), hypertension (HT), tanning ability (TA), smoking
status (SS), myxedema (MY), ever smoked (ES), salt
added to food (SAF), morning person (MP), asthma (AS),
dried fruit intake (DFI), snoring (SN), tense (TE), angina
(AN), headache (HA), coronary artery disease (CAD),
prostate cancer (PRCA), gout (GO), fresh fruit intake
(FFI), type II diabetes (T2D), supplementary vitamin and
mineral (VMS), depression (MDD), breast cancer (BRCA),
rheumatoid arthritis (RA) and osteoarthritis (OA). Among
the 25 binary traits, for the 11 diseases, we treated
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either self-reported or ICD10 cases as 1 and others as
0 following [39]. For TA, we treated ‘get very tanned’
as 1 and the others as 0. For MP, we treated ‘definitely
a morning person’ as 1 and the others as 0. Details
of the phenotypes analyzed in the paper are shown
in Supplementary Table S1 for quantitative traits and
Supplementary Table S2 for binary traits.

We performed quality control (QC) following the steps
described in [27]. Specifically, for sample QC, we retained
individuals (i) who have genotypes successfully mea-
sured, (ii) who are included in the genotype principal
component (PC) computation and (iii) who have a white
British ancestry. In addition, we excluded individuals (i)
who have more than 10 putative third-degree relatives
based on the kinship table, (ii) who have sex chromosome
aneuploidy and (iii) who are redacted and thus do not
have a corresponding ID in the phenotype data. For SNP
QC, we retained SNPs with a high genotype calling confi-
dence, as is evident by the maximum probability across
the three genotypes being larger than 0.9. We filtered out
SNPs (i) with a minor allele frequency (MAF) < 0.01, (ii)
with a Hardy–Weinberg equilibrium (HWE) test P-value
<10−7, (iii) with an imputation information score < 0.8,
(iv) with a proportion of missingness (Pm) > 0.05 or (v)
that are a duplicated SNP. We retained a total of 337 129
EUR individuals and analyzed two SNP sets: the HM3 SNP
set with 1 246 534 SNPs that are measured in the HM3
and the BiLEVE SNP set with 9 116 018 SNPs that are
imputed based on the BiLEVE study. For the HM3 SNP set,
we also examined a variation of this SNP set by including
503 836 additional low MAF SNPs (MAF between 0.005
and 0.01) to examine the benefits of including low MAF
SNPs for PGS accuracy. We only fitted eight PGS meth-
ods (CT, DBSLMM, lassosum, LDpred2-auto, LDpred2-inf,
LDpred2-nosp, LDpred2-sp and SCT) on the SNP set with
low MAF SNPs due to computational constraint.

For each phenotype in turn, we performed Monte Carlo
cross-validation to evaluate the performance of different
PGS methods [27, 38]. Specifically, we first randomly
selected 500 individuals (250 males and 250 females) who
have measurements for all traits to serve as the reference
panel. The reference panel is used to estimate the SNP
correlation matrix. We then split the remaining data into
four sets: a training data, a validation data, a second
validation data and a test data. We performed data split
in two different ways. In the first way, we randomly
selected 1000 samples to serve as the first validation
data and another 1000 samples to serve as the second
validation data. We then split the remaining samples
into a training data with 80% samples and a test data
with 20% samples. The relatively small validation sample
size allows us to carry out the comparison for different
PGS methods efficiently with our limited computational
resource. Indeed, many PGS methods (e.g. CT, DBSLMM,
lassosum, LDpred2, NPS and SCT) would require >64GB
memory if the validation data comes with a larger sam-
ple size, especially in the dense SNP setting. In the sec-
ond way, we randomly selected 80% samples into the

training data, 5% samples into the first validation data,
5% samples into the second validation data and the
remaining 10% samples into the test data. In particular,
the number of samples for the quantitative traits now
ranges from 8826 (for trait AM) to 16 987 (for trait BMI),
which is 8.83–16.99 times higher than that in the valida-
tion data from the first way of data split. The number of
samples for the binary traits now ranges from 7740 (for
trait PRCA) to 16 985 (for trait SAF). The second way of
data split ensures a relatively large sample size in the
validation dataset to ensure more potentially accurate
PGS performance. We presented the main results based
on the second way of data split and presented the other
way of data split as supplementary results.

With either way of data split, we repeated the process
five different times for Monte Carlo cross-validation. In
each replication, we fitted each of the 12 PGS methods
in the training data, tuned their hyper-parameters in the
validation data if needed, estimated the weights for the
12 PGS in the second validation data by fitting a standard
linear regression and evaluated PGS performance in the
remaining samples of the test data. Specifically, in the
training data, we obtained marginal z-scores through lin-
ear regression implemented in the GEMMA software [48].
Specifically, for each quantitative trait, we first fitted a
linear regression to remove the effects of the top 10 geno-
type PCs and sex and obtained phenotype residuals. We
transformed phenotype residuals to a standard normal
distribution through quantile–quantile transformation.
We then examined one SNP at a time and obtained its
marginal z-score for the trait using a standard linear
regression. For each binary trait, in the main analysis,
we directly fitted a linear regression model for each SNP
in turn by treating the top 10 genotype PCs and sex
as covariates to obtain the marginal z-scores. We fitted
different prediction methods in the training data using
the marginal z-scores. For binary traits, we also examined
the accuracy difference in PGS constructed by the models
fitted by linear versus that fitted by logistic regression.
To do so, we focused on two non-model-based methods,
CT and SCT, and fitted them using the marginal SNP
effect size estimates obtained from the logistic regression
instead of the linear regression, for all 25 binary traits
in the internal cross-validation. We did not examine the
model-based methods because the model-based meth-
ods all explicitly use a multiple linear regression model
for PGS construction. In the analysis, we also applied
logistic regression to tune the hypermeters in CT and
SCT.

After model fitting and tuning, we supplied the esti-
mated SNP effects from different PGS methods to the
test data to construct PGS using the score function in
PLINK [49]. For quantitative traits, we evaluated the per-
formance of different PGS methods in the test data using
R2 and mean standard error (MSE; calculated by Metrics
R package v.0.1.4). For binary traits, we evaluated the
performance of different PGS methods in the test data
using AUC (calculated by pROC R package v.1.15.3) and
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Nagelkerke pseudo R2 (calculated by rms R package v.6.1).
After obtaining these metrics, we calculated the relative
performance of each PGS method by contrasting it with
respective to the best method in each validation. Specif-
ically, for R2 and Nagelkerke pseudo R2, we calculated
the relative performance of each method as the ratio
between the performance of each method and that of the
best method in the replicate:

Relative Performance = Performanceeach method

Performancebest method
(1)

For AUC, we calculated the relative performance of
each method as:

Relative Performance = AUCeach method − 0.5
AUCbest method − 0.5

(2)

For MSE, we followed [31] and calculated the relative
performance of each method as:

Relative Performance = MSEeach method − MSEintercept

MSEbest method − MSEintercept
(3)

where MSEintercept is the MSE calculated with the simple
regression model with only an intercept term. Note that
the relative performance calculated based on R2, AUC
or Nagelkerke pseudo R2 is between 0 and 1, whereas
the relative performance calculated based on MSE is
a value below 1 where a negative value indicates that
the method performances even worse than the intercept
model. Following [27, 31], we defined the proportion of
the genetic variance explained by large effect SNPs as
PGE:

PGE = Var (Xlβl)

Var (Xlβl + Xsβs)
(4)

We donated genotype matrix of large effect SNPs as Xl,
effect size of large effect SNPs as βl, genotype matrix of
small effect SNPs as Xs and effect size of large effect SNPs
as βs.

Besides directly reporting these metrics for evaluating
method performance, we also categorized PGS methods
into three performance groups for every trait. Specifi-
cally, for each trait in turn, we compared the performance
of all other PGS methods with the top PGS method using
either a paired t-test or a Wilcoxon signed-rank test.
The paired t-test directly tests on the R2 after Fisher
transformation [50] (for quantitative traits), whereas the
Wilcoxon signed-rank test tests AUC (for binary traits)
from the two compared PGS methods across five test
sets, respectively. The PGS methods that have a similar
performance as the top PGS method based on a Bon-
ferroni corrected P-value threshold of 0.05 (=0.05/12) are
categorized into the top performance group. Similarly, we
examined the performance of all other PGS methods with
the bottom PGS method and categorized PGS methods
with similar performance into the bottom performance

group. The remaining PGS methods are then categorized
into the medium performance group. Note that the top
group is defined with respect to each metric. We report
the top group categorization in the main results based
on R2 for quantitative traits and AUC for binary traits,
though the categorization is quite consistent regardless
which metric we use.

External validation on three data categories: AFR,
ASA and EUR
Besides evaluating PGS methods through Monte Carlo
cross-validations within white British of UKB, we also
evaluated their performance in other ancestry groups of
UKB and other data sources. We simply refer to these
validations as external validations. The external vali-
dations were carried out on the 25 quantitative traits,
which are more readily available than the binary traits
in external data sources. In the external validations, we
first fitted different PGS methods in each one of the five
training sets of UKB. We then examined their prediction
performance in the external datasets that are grouped
into three general categories based on ancestry. The three
general categories are African (AFR), Asian (ASA) and EUR
and are described in detail below.

We obtained 7891 AFR individuals in UKB, defined
as Black or Black British, White and Black Caribbean,
White and Black African, Caribbean, African or any other
Black background. We followed the same procedure
described in the previous section for data processing.
For all traits, we intersected SNPs from African UKB with
the HM3 SNP set from white British UKB and analyzed
an overlap set of 760 711 SNPs. We analyzed all 25
quantitative and 25 binary traits for AFR (trait details
in Supplementary Tables S3 and S4, see Supplementary
Data available online). We evaluated the performance of
PGS methods using the individual level data of AFR.

The ASA data consists of two data sources: individuals
with Asian ancestry in UKB and BBJ. For UKB, we
obtained 3790 individuals with Asian ancestry, defined as
Chinese, White and Asian or any other Asian background,
and analyzed all 25 quantitative and 25 binary traits
(trait details in Supplementary Tables S5 and S6, see
Supplementary Data available online). We evaluated
the performance of PGS methods using the individual
level data of ASA. For BBJ, we obtained summary
statistics on 12 quantitative traits that were measured
there. The 12 traits include SH_BBJ (n = 159 095) [51],
HDL_BBJ (n = 70 657) [52], PLT_BBJ (n = 108 208) [52],
BMI_BBJ (n = 158 284) [53], AM_BBJ (n = 67 029) [54],
RBC_BBJ (n = 108 794) [52], EOS_BBJ (n = 62 076) [52],
TG_BBJ (n = 105 597) [52], WBC_BBJ (n = 107 964) [52],
SBP_BBJ (n = 136 597) [52], TC_BBJ (n = 128 305) [52] and
LDL_BBJ (n = 72 866) [52] (Supplementary Table S5, see
Supplementary Data available online). We evaluated
the performance of PGS methods using the summary
statistics of BBJ. For all traits, we intersected SNPs from
the two data sources with the HM3 SNP set from white
British UKB and analyzed an overlap set of 883 764 SNPs.
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The EUR data consist of GWAS summary statistics
obtained for individuals with European ancestry from
two data sources: GWAS-ALTAS and GRASP [55, 56]. In
the two data sources, we extracted datasets that contain
the analyzed quantitative traits in UKB, that have greater
than 100 000 SNPs, that contain summary statistics with
allelic information and that are measured only on non-
UKB individuals not part of the UKB data. With these
criteria, we obtained 25 datasets for 19 quantitative
traits that include SH (n = 253 288) [57], BMD (n = 66 628)
[58], HDL_GLGC (n = 188 577) [59], HDL_meta (n = 19 840)
[60], HDL_NMR (n = 24 925) [61], PLT (n = 4250) [62], BMI
(n = 253 288) [63], AM_RG1 (n = 49 427) [64], AM_RG2
(n = 329 345) [65], HC (n = 142 762) [4], RBC (n = 4250)
[62], WC (n = 142 762) [4], EOS (n = 4250) [62], TG_GLGC
(n = 188 577) [59], TG_NMR (n = 24 925) [61], WBC (n = 4250)
[62], FVC (n = 79 055) [66], FFR (n = 79 055) [66], FEV
(n = 79 055) [66], WHR (n = 142 762) [4], TC (n = 188 577)
[59], LDL_GLGC (n = 188 577), LDL_meta (n = 19 840) [60],
LDL_NMR (n = 24 925) [61] and BW (n = 69 308) [67]. Among
them, SH was adjusted for the top 20 genotype PCs [57].
The four blood measurements (PLT, RBC, EOS and WBC)
were adjusted for age, sex and time of blood collection
with both a linear and square components [62]. BMD
was corrected for age, weight, height, genomic principal
components and study-specific covariates [58]. BMI was
adjusted for age, age2 and other covariates such as
genotype PCs [63]. The adjusted covariates for AM_RG1
and AM_RG2 in the ReproGen consortium were not
described in detail in the original study [64, 65]. The three
lung function traits (FVC, FEV and FFR) in the SpiroMeta
study were adjusted for age, age2, sex, height and
genotype PCs [66]. The three anthropometric traits (WC,
HC and WHR) in the GIANT consortium were adjusted for
age, age2 and study-specific covariates [4]. The four lipid
traits (TC, HDL_GLGC, LDL_GLGC and TG_GLGC) in the
GLGC consortium were adjusted for age, age2, sex and
genotype PCs [59]. The two lipid traits (HDL_meta and
LDL_meta) in the meta-analysis used different adjusted
covariates in sub-studies [60]. The three lipid traits
(HDL_NMR, LDL_NMR and TG_NMR) were adjusted for
age, sex, time from last meal, if applicable, and first 10
principal components from genomic data [61]. BW was
adjusted for sex and gestational age [68]. Data details
are provided in Supplementary Table S8. For all traits, we
intersected SNPs from the 25 datasets with the HM3 SNP
set from white British UKB and analyzed an overlap set
of 821 361 SNPs.

Because the external data sources contain only sum-
mary statistics, we computed R2 in the test set using sum-
mary statistics following the formula in [27] to evaluate
PGS performance. Specifically,

R = cor
(
Ỹ, ˆ̃Y

)
=

1
ñ Ỹ

T
X̃β̂√

1
ñ β̂TX̃

T
X̃β̂

=
√

1
ñ z̃T

β̂
√

β̂TΣ β̂

(5)

where we denoted the unobserved individual-level phe-
notype vector in the external data as Ỹ, the unobserved
individual-level genotype matrix as X̃, the observed sum-
mary statistics in terms of z-scores as z̃, the estimated
SNP weights from the PGS method as β̂, the sample
size as ñ and Σ as the SNP correlation matrix, which is
estimated from the reference panel.

Software and PGS web server
Code for fitting different PGS methods and scripts for
reproducing all analyses carried out in the present study
are available at https://github.com/biostat0903/PGS-
Server. A PGS computing web server developed in the
present study is available at http://www.pgs-server.com.

Results
PGS method comparison overview
We evaluated the performance of 12 PGS methods on
25 quantitative traits and 25 binary traits through inter-
nal and external cross-validations (Figure 1A; details in
Methods). An overview of the method comparison work-
flow is shown in Figure 1. The compared PGS methods
can be generally categorized into model-based methods
and non-model-based methods. The model-based meth-
ods include polygenic methods that assume all SNPs to
have non-zero effects and sparse methods that assume a
small set of SNPs to have non-zero effects. The polygenic
methods can be further categorized into two subgroups
based on their detailed modeling assumptions on the
effect sizes [69]: a subgroup of methods that assume
a simple normality assumption on the effect sizes and
effectively perform a global shrinkage on the effects
regardless of their sizes; and another subgroup of meth-
ods that place a local shrinkage on each SNP to induce a
heavy tailed distribution on the effects sizes and shrink
the small effects adaptively towards zero more than the
large effects (Figure 1B). The non-model-based methods
include all the remaining methods that do not make
an explicit modeling assumption. Note that we followed
[3] to categorize the model-based methods based on
their modeling assumptions rather than the underlying
fitting algorithms: a method is categorized as a polygenic
method per its modeling assumption even though it may
yield a sparse solution due to its fitting algorithm; and
vice versa.

In the internal validations, we focused on 337 129
white British samples of UKB and performed Monte
Carlo cross-validation five times for each of the 50 traits
(Supplementary Tables S1 and S2, see Supplementary
Data available online). In particular, we trained PGS
methods in a training data with 80% individuals, tuned
the hyper-parameters in a validation data with 5%
individuals, fitted PGSagg in the second validation data
with 5% individual and evaluated their performance in a
test data with the remaining 10% individuals (Figure 1C).
When we fitted PGS models in dense SNP set for 25
quantitative traits, we treated 1000 samples randomly
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Figure 1. Overview of the comparison workflow in the present study. (A) We obtained 50 traits from UKB with European ancestry, 25 from other GWASs
with European ancestry and 112 from GWASs with Asian or African ancestries. (B) We evaluated the performance of 12 PGS methods that include model-
based ones such as polygenic methods and sparse methods as well as non-model-based ones. (C) For each examined trait, we divided the UKB data into
a training data, a validation data and a test data. We fitted each PGS method in the training data based on GWAS summary statistics and an LD reference
matrix, and, if necessary, selected the optimal hyper-parameter combinations in the validation data. We then evaluated the performance of the resulting
PGS either in the UKB test data based on individual-level data (internal cross-validations) or external test data based on GWAS summary statistics and
individual-level data (external cross-validations). (D) We evaluated the performance of PGS methods by Pearson R2 (for quantitative datasets) or AUC
(for binary datasets) in the test data. We also recorded the scalability of each PGS construction method across data splits by recording the physical
memory requirement and computation time.

selected from the first validation set as the validation
data.

In the validation, we examined the influence of SNP
density on prediction accuracy using two SNP sets: a non-
dense SNP set with 1 246 534 SNPs characterized in the
HM3 SNP set and a dense SNP set with 9 116 018 SNPs

measured on the imputed version of UK BiLEVE axiom
array (BiLEVE SNP set; [70]). We applied all PGS methods
to the HM3 SNP set and applied most PGS methods
to the UK BiLEVE SNP set (except for NPS, PRS-CS and
SbayesR due to their heavy computational burden). We
evaluated the performance of PGS methods in the test
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data using the following absolute metrics: R2 or MSE for
quantitative traits, and AUC or pseudo/Nagelkerke R2 for
binary traits (Figure 1D). We also calculated the relative
performance of each method by contrasting its perfor-
mance value with respect to that of the best method in
each cross-validation for each trait. We present the main
results based on the relative performance to facilitate
the comparison of method performance across traits,
but we also present absolute performance results in the
Supplementary Figures.

In the external validations, we focused on quantitative
traits and fitted PGS methods in the same UKB white
British training data but evaluated their performance in
three other data sources (Figure 1C). The three other data
sources include AFR, which consists of 7891 African sam-
ples in UKB (Supplementary Tables S3 and S4, see Sup-
plementary Data available online); ASA, which consists
of two sub-datasets, including one sub-data with 3790
Asian samples in UKB and another sub-data with 62 076–
159 095 individuals in BBJ (Supplementary Tables S5 and
S6, see Supplementary Data available online) and EUR,
which consists of 4250–329 345 individuals of European
ancestry from multiple external data sources other than
UKB (Supplementary Table S7, see Supplementary Data
available online). Because BBJ data sources contain sum-
mary statistics, we computed R2 in the test set using
summary statistics following the Equation (5) to evaluate
PGS performance [27]. We calculated the relative perfor-
mance of each method by contrasting its performance
value with respect to that of the best method in each
cross-validation for each trait (Figure 1D).

Internal cross-validations in UKB
We first examined the performance of PGS methods
through internal cross-validation. For each trait in
turn, we evaluated the performance of methods in
the test data (Supplementary Figures S1B, D, S2 and S3
for quantitative traits; Supplementary Figures S4B, D,
S5 and S6 for binary traits, see Supplementary Data
available online) and ranked them based on the aver-
age performance across Monte Carlo cross-validation
(Figure 2A and B for quantitative traits; Figure 2C and
D for binary traits). Across traits, we found that two
of the polygenic methods that perform local shrinkage
on the effect sizes achieved the best performance.
Specifically, the relative accuracy of DBSLMM is on
average 91.21 and 97.65% for quantitative and binary
traits, respectively; and that of lassosum is 89.98 and
86.78% for quantitative and binary traits, respectively.
The other local shrinkage method PRS-CS also performs
reasonably well: its relative accuracy is on average
68.21 and 91.98% for quantitative and binary traits,
respectively. The performance of the local shrinkage
polygenic methods is generally followed by the global
shrinkage polygenic methods. For example, the relative
accuracy of LDpred2-nosp is on average 92.70 and 95.03%
for quantitative and binary traits, respectively; and
that of LDpred2-inf is 78.74 and 92.15%, respectively.

In contrast, the sparse methods that assume a small
proportion of SNPs to have non-zero effects often do
not perform as well as the polygenic methods. For
example, the relative accuracy of SbayesR is on average
57.77 and 89.21% in quantitative and binary traits,
respectively. As one might expect, non-model-based
methods, such as CT and NPS, often do not perform
as well as the model-based methods. Importantly, the
ranking for most PGS methods is reasonably consistent
regardless of which metric we used to evaluate their
performance (Supplementary Figures S2, S5 and S7, see
Supplementary Data available online).

Besides directly reporting the ranking of PGS methods
based on the evaluation metrics, we categorized PGS
methods into three performance groups (top, medium
and bottom) for every trait (Supplementary Figure S1A
and C for quantitative traits; Supplementary Figure S4A
and C for binary traits; categorization details in Meth-
ods). Method categorization revealed largely consistent
results as compared with direct ranking of methods. For
example, both lassosum and DBSLMM perform the best:
DBSLMM is in the top group for 19 quantitative traits
and 23 binary traits, whereas lassosum is in the top
group for 14 quantitative traits and seven binary traits.
Their performance is followed by other local shrinkage
that include PRS-CS (top for three quantitative traits
and 13 binary traits) and global shrinkage methods that
include LDpred2-nosp (top for 20 quantitative traits and
18 binary traits), LDpred2-auto (top for one quantitative
trait and seven binary traits), LDpred2-inf (top for one
quantitative trait and 15 binary traits) and SBLUP (top
for two quantitative traits and 15 binary trait). The per-
formances of these polygenic methods are followed by
sparse methods such as LDpred2-sp (top for 15 quanti-
tative trait and 21 binary trait) and SbayesR (top for nine
binary traits). Some non-model-based methods such as
SCT (top for 12 quantitative traits and five binary traits)
and CT (top for five quantitative traits) perform reason-
ably well while NPS is top for no trait.

We carefully examined factors that influence the
performance of PGS methods other than their modeling
assumptions on the SNP effect size distribution. First, we
found that the choice of the SNP sets used for fitting PGS
methods does not influence much the performance of
the majority of PGS methods (Supplementary Figures S8–
S11, see Supplementary Data available online). Indeed,
most PGS methods, except for LDpred2 methods, either
have similar or slightly reduced performance when
using the dense SNP set as compared with the non-
dense SNP set. However, the performance of the four
LDpred2 methods are substantially reduced when
using the dense SNP set (Supplementary Figure S12,
see Supplementary Data available online), presumably
due to the slow convergence of the LDpred2 algorithm
when the number of SNPs is large [27]. Second, we
found that the performance of PGS methods for a
given trait is reasonably highly correlated with the
SNP heritability underlying the quantitative and binary
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Figure 2. The relative prediction performance of 13 PGS methods for 25 quantitative and 25 binary traits in UKB cross-validations. Compared methods
include CT, DBSLMM, lassosum, LDpred2-auto, LDpred2-inf, LDpred2-nosp, LDpred2-sp, NPS, PRS-CS, SbayesR, SBLUP, SCT and PGSagg. (A) Boxplot
shows the relative performance of each PGS method with respective to the best method in terms of prediction R2 across validation folds and across 25
quantitative traits. (B) Boxplot shows the relative performance of each PGS method with respect to the best method in terms of prediction MSE across
validation folds and across quantitative traits. (C) Boxplot shows the relative performance of each PGS method with respect to the best method in terms
of prediction AUC across validation folds and across 25 binary traits. (D) Boxplot shows the relative performance of each PGS method with respect to
the best method in terms of the prediction Nagelkerke R2 across validation folds and across binary traits.

traits (Supplementary Figures S13, S14, S17 and S18,
see Supplementary Data available online). Specifically,
for quantitative traits, the linear regression coeffi-
cients between the prediction R2 and SNP heritability
estimate across traits ranges from 0.336 (for NPS)
to 0.613 (for LDpred2-nosp), with a mean value of
0.509 across methods. For binary traits, except for
SBLUP, the linear regression coefficients between AUC
and SNP heritability estimate across traits ranges
from 1.257 (for NPS) to 1.701 (for DBSLMM), with
a mean value of 1.562 across methods. In addition,
the performance of PGS methods is also reasonably
highly correlated with the proportion of the genetic
variance explained by large effect SNPs, a term known
as PGE (Supplementary Figures S15, S16, S19 and S20,
see Supplementary Data available online; [27, 31]). For

quantitative traits, the linear regression coefficients
between the prediction R2 and PGE ranges from 0.239
(for NPS) to 0.415 (for DBSLMM), with an average value
of 0.329 across methods. For binary traits, the linear
regression coefficients between AUC and PGE ranges
from 1.146 (for NPS) to 1.539 (for DBSLMM), with an aver-
age value of 1.404 across methods. Third, for the same
model implemented in the same software, the tuning
version that selects hyper-parameter based on a sepa-
rate validation data often outperforms the automatic
version, which infers the hyper-parameters directly
in the training data. For example, the default tuning
version of DBSLMM is on average 1.13% (median = 1.14%)
better than DBSLMMauto; whereas the default tuning
version of PRS-CS is 12.29% (median = 3.48%) better
than PRS-CSauto (Supplementary Figures S21 and S22,
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see Supplementary Data available online). Fourth, the
prediction performance for the majority of methods
remains almost identical regardless of whether low MAF
SNPs are included or not: the median AUC improvement
by using low MAF SNPs is 0.00% across methods and
traits (range: −0.06 to 0.07%; Supplementary Figure S23,
see Supplementary Data available online). The only
exception is lassosum, whose performance is slightly
improved when low MAF SNPs are included to the model,
with a median AUC improvement of 7.32% across all
traits (range: −0.09 to 53.84%). Finally, for the two non-
model-based methods (CT and SCT) that can make use
of marginal SNP effect size estimates obtained from the
logistic regression and fit PGS using logistic regression,
their performances remain almost identical across
the 25 binary traits in the internal cross-validation,
regardless of whether we used the logistic regression
or linear regression (Supplementary Figure S24, see
Supplementary Data available online).

Because different PGS methods have different perfor-
mance for different traits, we explored a simple aggre-
gation strategy, which we refer to as PGSagg, to combine
the benefits of all 12 PGS methods (details in Methods).
Specifically, we obtained PGS from each of the 12 meth-
ods and aggregated them into a single PGS through a
weighted summation. The weights in the summation
are inferred from a separate validation set (5% of the
total sample size). In the analysis, we found that PGSagg
works well across all 50 traits and is ranked as the best
method for 24 quantitative traits and 12 binary traits.
For traits where the aggregation method performs the
best, its improvement over the second-best method is on
average 4.59%. For traits where the aggregation method
does not perform the best, its accuracy loss as com-
pared with the best method is on average 1.92%. The
average improvement in prediction accuracy brought by
the aggregation strategy over CT, DBSLMM, lassosum,
LDpred2-auto, LDpred2-inf, LDpred2-nosp, LDpred2-sp,
NPS, SBLUP, SbayesR, PRS-CS and SCT are 23.54, 5.65,
13.78, 22.51, 19.81, 6.12, 6.45, 133.96, 30.26, 45.92, 32.91,
13.02%, respectively. Therefore, the simple aggregation
strategy can serve as an effective approach to improve
PGS accuracy across traits.

External validations: AFR, ASA and EUR
We evaluated the performance of PGS methods through
external validations to examine their robustness and
transferability for cross-ancestry prediction and cross-
study prediction [71]. Briefly, we fitted different PGS
methods in each of the five training/validation datasets
in UKB and then examined their performance in each
of the three external data sources that include AFR,
ASA and EUR. The external data sources include data
measured on different genetic ancestry groups (AFR
and ASA-UKB) and data collected from separate studies
(ASA-BBJ and EUR), allowing us to examine the cross-
ancestry and cross-study performance of different PGS
methods. The prediction R2 results from different PGS

methods across the five different UKB training data
for the three external data are presented in Figure 3
and Supplementary Figures S25–S33. As expected, the
performance of all PGS methods decreases in the
external validations as compared with the internal
validations. The loss of prediction accuracy is particu-
larly apparent in cross-ancestry validation as compared
with cross-study validation. Specifically, with the same
training data in UKB, PGS methods lose an average
of 81.45% accuracy in AFR (median = 81.53%, ranging
from 75.42 to 88.12%; Supplementary Figures S27–
S28, see Supplementary Data available online), 68.76%
in ASA-BBJ (median = 67.88%, ranging from 59.49 to
93.60%; Supplementary Figure S29, see Supplemen-
tary Data available online) and 66.61% in ASA-UKB
(median = 66.70%, ranging from 56.92 to 77.50%; Sup-
plementary Figures S29 and S30, see Supplementary
Data available online), as compared with that in the
UKB test set. In contrast, PGS methods lose an average
of 44.10% accuracy in the cross-study validation of
EUR (median = 40.06%, ranging from 33.50 to 70.07%
Supplementary Figure S31, see Supplementary Data
available online), as compared with that in the UKB test
set.

Importantly, the rank of different PGS methods
remains largely similarly to that observed in the internal
validations. In particular, we calculated the fraction
of traits on which the performance rank of a given
PGS method in the external validations changed no
greater than two as compared with internal valida-
tions. Such fraction ranges from 35.45% (for PRS-CS)
to 84.44% (for DBSLMM) with an average fraction of
63.26% (medium = 63.88%), suggesting that the relative
performance of most methods stays similar between
the internal and external validations. In addition,
consistent with internal validations, we found that
certain polygenic methods with local shrinkage tend
to perform the best. For example, the relative accu-
racy of three local shrinkage methods (i.e. DBSLMM
lassosum and PRS-CS) is on average 84.44, 75.98 and
35.45%, respectively. The relative accuracy of LDpred2-
auto and LDpred2-inf is on average 63.33 and 63.88%,
respectively. Some non-model-based methods CT and
NPS not fare well. The results based on categorizing
methods into three performance categories reach similar
conclusions (Supplementary Figures S25A, C, E, G, S26A
and C, see Supplementary Data available online). Finally,
the aggregation approach PGSagg does not work as
well in the external validations as compared with the
internal validations (Supplementary Figures S32–S33,
see Supplementary Data available online). Specifically,
PGSagg is ranked as the third among the PGS methods
and its relative performance is 70.97%. In addition,
PGSagg works better in the binary traits than the
quantitative traits. Specifically, the relative performance
of PGSagg across the 25 binary traits is on average 84.53%
in the AFR ancestry and 92.68% in the ASA ancestry.
Although the relative performance of PGSagg across the
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Figure 3. The relative prediction performance of 13 PGS methods for quantitative traits in the external validations. Compared methods include CT,
DBSLMM, lassosum, LDpred2-auto, LDpred2-inf, LDpred2-nosp, LDpred2-sp, NPS, PRS-CS, SbayesR, SBLUP, SCT and PGSagg. (A) Boxplot shows the relative
performance of each PGS method with respective to the best method in terms of prediction R2 across validation folds and across 25 quantitative traits
in AFR ancestry from UKB. (B) Boxplot shows the relative performance of each PGS method with respective to the best method in terms of prediction
AUC across validation folds and across 25 binary traits in AFR ancestry from UKB. (C) Boxplot shows the relative performance of each PGS method with
respective to the best method in terms of prediction R2 across validation folds and across 12 quantitative traits in ASA ancestry from BBJ. (D) Boxplot
shows the relative performance of each PGS method with respective to the best method in terms of prediction R2 across validation folds and across 25
quantitative traits in ASA ancestry from UKB. (E) Boxplot shows the relative performance of each PGS method with respective to the best method in
terms of prediction AUC across validation folds and across 25 binary traits in ASA ancestry from UKB. (F) Boxplot shows the relative performance of
each PGS method with respective to the best method in terms of prediction R2 across validation folds and across 25 quantitative traits in EUR ancestry
from external summary statistics.

quantitative traits is on average 62.60 and 52.95% in the
AFR and the ASA ancestry, respectively.

Computation consumption
We recorded computing time and memory usage for dif-
ferent PGS methods for two example traits that include
SH and MDD (Figure 4). In the analysis, we found that
DBSLMM and lassosum have the lowest computational

cost both in terms of memory usage and in terms of com-
puting time. Specifically, in the HM3 SNP set, it took the
two methods an average of 18.97 and 17.49 min, with 0.17
and 3.69 Gb memory, to analyze the two traits, respec-
tively. In contrast, NPS and PRS-CS are computationally
slow (846.29 and 6004.11 min) but have low memory
requirement (0.87 and 0.93 Gb). CT/SCT, LDpred2-auto,
LDpred2-inf and SBLUP are computationally reasonably
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Figure 4. Physical memory usage and computing time for different PGS methods. Compared methods include CT/SCT, DBSLMM, lassosum, LDpred2-auto,
LDpred2-inf, LDpred2 that include both LDpred2-nosp and LDpred2-sp, NPS, PRS-CS, SbayesR and SBLUP. Memory usage (A, C; in Gb) and computing
time (B, D; in min) for different methods based on two SNP sets: the HM3 SNP set (A, B) and the BiLEVE SNP set (C, D). We examined two thread settings
where we used either one CPU thread for computation (aquamarine) or five CPU threads for computation (peach). Comparison was performed based
on Intel Xeon CPU E5–2683 2.00-GHz processors. Note that the x-axis for all panels is on log-scale.

fast (131.45, 467.26, 91.87 and 110.11 min) but require a
reasonably large amount of memory (23.65, 12.61, 12.61
and 6.04 Gb). LDpred2 and SbayesR are both computa-
tionally slow (2608.11 and 1336.14 min) and require a
large memory (12.88 and 30.02 Gb). In the BiLEVE SNP set,
it took DBSLMM and lassosum an average of 341.35 and
82.25 min, with 4.88 and 19.39 Gb memory requirement,
to analyze the two traits, respectively. The computing
time and memory cost of LDpred2-auto (407.44 min and
11.97 Gb) is comparable with the two. The other methods,
including CT/SCT (1040.15 min and 29.55 Gb), LDpred2-
inf (1716.14 min and 11.97 Gb), LDpred2 (4720.51 min and
14.82 Gb) and SBLUP (1131.03 min and 61.52 Gb), incur
substantially larger computing cost. Note that the three
remaining methods (NPS, PRS-CS and SbayesR) cannot be
applied to the BiLEVE SNP set as they require more than
64 Gb memory and/or take longer than 3 days without

the ability to carry out computation in parallel based on
individual chromosomes.

Importantly, five of the PGS software, including
CT/SCT, DBSLMM, lassosum, LDpred2-auto, LDpred2-
inf, LDpred2-nosp/sp and SBLUP, are capable of making
use of the multithreading computing environment to
improve computing speed further. In HM3 SNP set, by
using five threads, the eight methods improve computing
speed by an average of 119.53%, though with an average
of 25.60% increase in memory requirement. In the BiLEVE
SNP set, by using five threads, they improve computing
speed by an average of 22.44%, though with an average
of 26.53% increase in memory requirement.

PGS web server
We have created a PGS web server where users can
construct PGS for their own applications. The server
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currently hosts the 12 PGS methods compared in the
present study. With the server, users can fit any PGS
method in a training data, tune its hyper-parameters in a
validation data if required and output the inferred SNP
weights for PGS construction. Users can also compute
R2 in a test data using the inferred SNP weights. The
server only requires summary statistics and a reference
LD panel as input. It is currently designed with the ability
for efficient parallelization of computationally intensive
tasks.

The PGS web server consists of four technical compo-
nents: the Nginx proxy, the web frontend application, the
web backend application and the PGS computing appli-
cation. The Nginx proxy accepts HTTP requests from
the website and forwards these requests to the web
frontend graphical user interface (GUI) and/or backend
application based on URL routing rules. The web fron-
tend is designed as a web single page application (SPA)
and is implemented based on the open-source frame-
works React and AntDesign. The web frontend GUI facil-
itates multiple tasks that include file uploading, model
parameter set up and results reporting. Specifically, the
home page of the PGS webserver provides a procedure
overview for PGS construction and validation. The navi-
gation menu on the homepage consists of multiple items
that allows users to either choose PGS methods for model
fitting or computing R2 in the test data with the esti-
mated SNP weights. The web frontend communicates
with the Java backend server by asynchronous HTTP
requests (AJAX) with JSON as an interchange format.
All transmissions between the frontend and backend
are encrypted using secure socket layer (SSL). The Java
backend application is implemented based on Spring
Boot and RESTful web framework. The backend applica-
tion receives AJAX requests from web frontend, validates
input files and computation parameters and performs
PGS modeling fitting or R2 computation. The PGS server
treats shell scripts as glue logic to connect different PGS
methods, implemented by either C/C++, R or Python,
with the web backend.

The PGS web server carries out PGS workflow in three
separate steps (Figure 5). First, the server requires users
to upload GWAS summary statistics in the GEMMA file
format. To improve uploading efficiency for large files,
the frontend web application automatically slices the
uploading file into small segments, each of about 20 Mb
in size. The web server displays a progress bar on the
percentage of uploaded file during the uploading process.
After file uploading, the PGS server relies on backend Java
service application to check the updated files for basic
file formatting such as filename extension, column num-
ber, separator of each column and computation param-
eters. The user will receive a format error if file check
fails.

Second, the user choses one of the 12 PGS methods for
model fitting. A dropdown manual is displayed, allowing
user to select parameter initialization options for some of
the PGS methods (CT, DBSLMM, LDpred2 and SCT). Based

Figure 5. Analytic workflow of the PGS webserver. The PGS webserver
carries out two distinct analytic tasks: PGS construction and accuracy
evaluation. For the task of PGS construction, the users are required to
upload the GWAS summary statistics for the training data, and if needed,
the validation data. The users will also have the option to choose one
of the 12 PGS methods for PGS construction. For the task of accuracy
evaluation, the users are required to upload the estimated SNP effect sizes
along with the GWAS summary statistics for the test data. The webserver
will carry out accuracy evaluation by computing a prediction R2 in the
test data. For both tasks, files are uploaded in small segments to allow for
efficient uploading. The webserver performs basic file format checking
and calls the web backend application if the files pass the format check.
The web backend application will then use the corresponding shell scripts
to carry out the desired analytic task. At the end of the task, the webserver
will send out an email with an attached log file and a download link for
the user to retrieve their results. All uploaded files will be deleted within
48 hours after the email notification.

on the selected PGS method, the PGS server will register
and allocate computing nodes to the desired analytic
task and relies on shell scripts to call either the R function
or the Python code to fit the corresponding PGS method.
In the fitting process, PGS server manages and monitors
the computation progress including node configuration
through Linux shell scripts. The data processing status is
monitored during computation via the output log file.

Finally, once the PGS method fitting jobs are finished,
the shell script will return a code to the web frontend to
report service success. In addition, an email will be sent
to the user, with a link for downloading the log summary
file and the output file, which contains either the effect
size estimates (for PGS model fitting) or the test R2 (for
PGS construction and validation). In the workflow, PGS
server employs two steps to ensure data security: the
input file and estimation results are encrypted on the fly
using a one-time password; and all input files, result files
and final reports are deleted within 48 h after sending out
the email notification.

Overall, we hope the PGS webserver serves as a use-
ful and important tool for practitioners to perform PGS
analysis in their own applications.
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Discussion

We have presented a comprehensive benchmarking
study on 12 PGS methods plus an aggregation approach
through UKB internal validations as well as cross-
ancestry and cross-study external validations. We
have compared the accuracy of PGS methods for both
quantitative traits and binary phenotypes and recorded
their computational cost in terms of computing time and
memory requirement. We show that a key determent of
PGS method performance is the modeling assumption
on the distribution of SNP effect sizes. Indeed, our results
suggest that polygenic methods with local shrinkage on
the SNP effect sizes often achieve higher accuracy than
global shrinkage methods, sparse methods as well as
ad hoc algorithm based PGS construction approaches.
Besides method comparison, we have presented a
simple aggregating approach to combine the 12 PGS
from different methods into a single PGS that achieves
superior prediction accuracy across a wide range of traits
in both internal and external validations. In addition,
we have presented a PGS webserver to facilitate the
adaptation of different PGS methods for routine analysis.
We hope that the detailed comparison of these state-
of-the-art PGS methods, the aggregation approach, the
PGS server and our recommendations for choosing PGS
methods (Figure 6) can serve as a useful guideline and
an analytic platform for practitioners.

The present study compared 12 PGS methods plus an
aggregation approach on 25 quantitative traits and 25
binary traits from 50 datasets in the internal validation
and 137 datasets in the external validation. The number
of PGS methods and the number of traits examined in
the present study are much larger than those examined
in early comparable studies. For example, Pain et al.
compared eight PGS methods for seven quantitative
and eight binary traits [40]. Ni et al. compared 10
PGS methods for two binary traits [42]. Privé et al.
compared eight PGS methods for eight diseases [33].
Although our study examined a large number of PGS
methods across a large number of traits among these
studies, we did find that some of the results we obtain
share certain consistency with the three previous
comparative studies. For example, the three previous
studies found that the performance of LDpred2 is better
than lassosum, PRS-CS and SBLUP. We find similar
results: the relative performance of LDpred2-nosp and
LDpred2-sp in the 25 quantitative traits on average is
0.93 and 0.92, respectively, which is better than that of
the other three methods (0.90, 0.58, 0.70, respectively).
As another example, the previous studies found that
the tuning version of PRS-CS and LDpred2 performs
better than automatic version PRS-CSauto and LDpred2-
inf, respectively. We also found that the tuning version
of DBSLMM is on average 1.13% (median = 1.14%) better
than DBSLMMauto, whereas the tuning version of PRS-
CS is on average 12.29% (median = 3.48%) better than
PRS-CSauto across 50 traits. Nevertheless, some of our

results are different from the previous three studies.
For example, although the previous studies found the
performance of CT generally to be the worst, we found
that its performance is on the low end but not always
the worst. The moderate performance of CT observed in
the present study is presumably because we used 1400
hyper-parameters combination for CT, which represents
a much larger parameter space than previously explored.

In the present study, we have primarily focused on
using the default software settings when applying differ-
ent PGS methods. We acknowledge, however, that modi-
fying the software setting for certain methods on certain
data types may help improve performance. We have
primarily focused on comparing the prediction accu-
racy of different PGS methods. We note that PGS meth-
ods have also been used for many downstream analytic
tasks other than prediction in GWASs. For example, PGS
methods have been widely used for risk stratification,
phenome-wide association studies, Mendelian random-
ization and transcriptome association studies (TWASs;
[72, 73]). Evaluating the performance of PGS methods
for other analytic tasks is an important future research
direction.

We have primarily focused on modeling quantitate
traits and binary traits. Time-to-event data is another
important data type that is becoming common to genetic
study of human disease with Biobank scale data. The
standard approach for analyzing time-to-event data is
the Cox regression model, also known as the proportional
hazards model, which examines the association between
a time-to-event outcome variable and an exposure vari-
able of interest. Although a typical Cox regression model
accommodates a handful of exposure variables, recent
studies have extended the Cox regression model to incor-
porate a large number of exposure variables by placing
lasso, Elastic Net or other penalties on the model coef-
ficients [74]. These penalized Cox regression models can
be directly applied to the setting of PGS, where we can
treat the SNPs as the exposure variables and the time-
to-event as the outcome variable. The estimated SNP
coefficients from such penalized Cox regression model
can be used to construct a predictor for the latent pro-
portional hazards, which can be further used to predict
the time-to-event. Certainly, fitting the penalized Cox
regression models is computationally demanding. For
example, the packages glmnet [75], penalized [76], cox-
path [77] and glcoxph [78] use different fitting strategies
but all require exceedingly large amount of RAM mem-
ory, especially for fitting biobank scale genotype data.
Consequently, several recent PGS analysis of time-to-
event data directly fitted a Cox regression model on one
SNP at a time and constructed a polygenic hazard score
by summing the coefficient estimates from the fitted
SNPs [79]. However, fitting one SNP at a time ignores
the correlation among SNPs due to LD. Importantly, Li
et al. recently proposed a new approach, snpnet-Cox, to
solve L1 regularized Cox regression for large-scale and
high-dimensional data that do not fit in the memory
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Figure 6. Practical guideline for choosing PGS methods. Compared methods include CT, DBSLMM, lassosum, LDpred2-auto, LDpred2-inf, LDpred2-nosp,
LDpred2-sp, NPS, PRS-CS, SbayesR, SBLUP and SCT. Methods (y-axis) are first ranked based on their average performance across each examined criterion
(x-axis) and are then categorized into three groups that include a top performance group (top three methods; deep sky blue colored large circles),
a medium performance group (navajo white colored medium circles) and a bottom performance group (bottom three methods; tomato colored small
circles). For the performance evaluated based on the dense SNP set, we categorized the top two methods into the top performance group and the bottom
two methods into the poor performance group as three methods (NPS, PRS-CS and SbayesR) require too much computational resources and thus cannot
be applied there.

and can be directly applied to UKB data [80]. Therefore,
exploring similar computationally efficient ways to fit
other types of penalized Cox regression models beyond
L1 regularization is an important future direction for
constructing accurate PGS for time-to-event data.

We have primarily focused on evaluating model-
based and non-model-based PGS methods that use only
GWAS information. Several recent PGS methods have
been developed to incorporate additional and external
information beyond what is available in the GWAS
data. Such external information can be either in the
form of SNP functional annotations or in the form
of other phenotypes in addition to the phenotype of
interest. Specifically, several PGS methods have been
developed to incorporate SNP functional annotations to
improve phenotype prediction. For example, AnnoPred
incorporates SNP functional annotations into the prior
distribution of effect sizes based on a sparse modeling
assumption on the SNP effect sizes [81]. LDpred-funct
builds upon the LMM and models the SNP effect size
variance as a function of SNP annotations [82]. In
addition, several PGS methods have been developed to
incorporate pleiotropic information that characterizes
SNP effects similarity across multiple correlated traits

to improve SNP effect size estimation on the trait of
interest. PGS methods that take advantage of pleiotropy
are often based on the multivariate LMM [83], also
known as the MT-BLUP in prediction settings. Example
PGS methods that make use of pleiotropic information
include MTGBLUP [84] and wMT-SBLUP [85]. Finally,
other methods, such as PleioPred [86], also incorporate
SNP functional annotations into pleiotropic modeling.
Incorporating external information can often improve
the accuracy of PGS. Therefore, evaluating additional
PGS methods that incorporate external information and
evaluating the benefits of the different sources of exter-
nal information for improving prediction performance is
another important future direction.

Key Points

• We systemically compared the prediction performance
of existing PGS construction methods using internal and
external validation data.

• We presented a simple aggregation strategy that com-
bines multiple PGS from different methods to take
advantage of their distinct benefits to achieve stable and
superior prediction performance.
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• We developed a PGS webserver that allows users to
upload their own GWAS summary statistics and choose
different PGS methods to fit the data directly on the
server.

Supplementary data
Supplementary data are available online at Briefings in
Bioinformatics.
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